On the Existence of Solutions to the Monge-ampère Equation with Infinite Boundary Values

نویسندگان

  • AHMED MOHAMMED
  • David S. Tartakoff
چکیده

Given a positive and an increasing nonlinearity f that satisfies an appropriate growth condition at infinity, we provide a condition on g ∈ C∞(Ω) for which the Monge-Ampère equation detD2u = gf(u) admits a solution with infinite boundary value on a strictly convex domain Ω. Sufficient conditions for the nonexistence of such solutions will also be given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aleksandrov-type Estimates for a Parabolic Monge-ampère Equation

A classical result of Aleksandrov allows us to estimate the size of a convex function u at a point x in a bounded domain Ω in terms of the distance from x to the boundary of Ω if ∫ Ω detD 2u dx < ∞. This estimate plays a prominent role in the existence and regularity theory of the Monge-Ampère equation. Jerison proved an extension of Aleksandrov’s result that provides a similar estimate, in som...

متن کامل

Boundary regularity for the Monge-Ampère and affine maximal surface equations

In this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the existence and uniqueness of globally smooth solutions to the second boundary value problem for the affine maximal surface equation and affine me...

متن کامل

An Aleksandrov-type Estimate for a Parabolic Monge-ampère Equation

A classical result of Aleksandrov allows one to estimate the size of a convex function u at a point x in a bounded domain Ω in terms of the distance from x to the boundary of Ω if R Ω det Du dx < ∞. This estimate plays a prominent role in the existence and regularity theory of the Monge-Ampère equation. Jerison proved an extension of Aleksandrov’s result that provides a similar estimate, in som...

متن کامل

The Monge-Ampère equation and its geometric applications

In this paper we present the basic theory of the Monge-Ampère equation together with a selection of geometric applications, mainly to affine geometry. First we introduce the Monge-Ampère measure and the resultant notion of generalized solution of Aleksandrov. Then we discuss a priori estimates and regularity, followed by the existence and uniqueness of solutions to various boundary value proble...

متن کامل

The Monge–ampère Equation with Infinite Boundary Value

with the infinite boundary value condition u = +∞ on ∂Ω. (1.2) We will look for strictly convex solutions in C∞(Ω); it is necessary to assume the underlying domain Ω to be convex for such solutions to exist. This problem was first considered by Cheng and Yau ([5], [6]) for ψ(x, u) = eKuf(x) in bounded convex domains and for ψ(u) = e2u in unbounded domains. More recently, Matero [11] treated the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006